Reactivity of Site-Isolated Metal Clusters: Propylidyne on γ -Al₂O₃-Supported Ir₄

Andrew M. Argo, Jesse F. Goellner, Brian L. Phillips, Ghansham A. Panjabi, and Bruce C. Gates*

Contribution from the Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616

Received July 31, 2000

Abstract: To contrast the reactivity of supported metal clusters with that of extended metal surfaces, we investigated the reactions of tetrairidium clusters supported on porous γ -Al₂O₃ (Ir₄/ γ -Al₂O₃) with propene and with H₂. Infrared, ¹³C NMR, and extended X-ray absorption fine-structure spectroscopy were used to characterize the ligands formed on the clusters. Propene adsorption onto Ir_4/γ -Al₂O₃ at 298 K gave stable, cluster-bound μ_3 -propylidyne. Propene adsorbed onto Ir₄/ γ -Al₂O₃ at 138 K reacted at approximately 219 K to form a stable, highly dehydrogenated, cluster-bound hydrocarbon species approximated as $C_x H_y$ (such as, for example, $C_3 H_2$ or C2H). H2 reacted with Ir4/y-Al2O3 at 298 K, forming ligands (likely hydrides), which prevented subsequent reaction of the clusters with propene to form propylidyne. Propylidyne on Ir_4 was stable in helium or H_2 as the sample was heated to 523 K, whereupon it reacted with oxygen of the support to give CO. Propylidyne on Ir₄ did not undergo isotopic exchange in the presence of D₂ at 298 K. In contrast, the literature shows that propylidyne chemisorbed on extended metal surfaces is hydrogenated in the presence of H_2 (or D_2) and exchanges hydrogen with gaseous D_2 at room temperature; in the absence of H_2 , it decomposes thermally to give hydrocarbon fragments at temperatures much less than 523 K. The striking difference in reactivities of propylidyne on clusters and propylidyne on extended metal surfaces implies the requirement of ensembles of more than the three metal surface atoms bonded to propylidyne in the surface reactions. The results highlight the unique reactivity of small site-isolated metal clusters.

Introduction

Metals in technological catalysts are usually dispersed as small, nonuniform clusters or crystallites (particles) on higharea porous supports. Models of these catalysts range from sizeselected gas-phase metal clusters to single crystals of metal. Our goals were to investigate a more realistic model of a metal catalyst, well-defined clusters isolated on a support, namely, Ir₄ on γ -Al₂O₃. The sample was prepared by adsorption of [Ir₄(CO)₁₂] onto γ -Al₂O₃, giving [Ir₄(CO)₁₂]/ γ -Al₂O₃, which was decarbonylated to give nearly monodisperse Ir₄/ γ -Al₂O₃.

Of the model catalysts used to investigate fundamentals of metal catalysis, the most thoroughly investigated are single crystals, which offer the advantages of stability, structural simplicity, and ease of characterization by the methods of surface science. An example of a well-characterized single-crystal catalyst is Pt(111), which is used for hydrogenation of alkenes; sum frequency generation has been applied to observe intermediates on the surface during the catalysis.¹⁻⁴ Disadvantages of single crystals as model catalysts are that the large periodic arrays of metal atoms have properties different from those of isolated clusters and that, furthermore, single crystals cannot be used to determine the influence of a support.

Here we report results characterizing reactions on supported metal clusters that lend themselves to comparison to results characterizing single crystals of metal. Infrared, extended X-ray absorption fine structure (EXAFS), and ¹³C NMR spectroscopy were used to identify species formed by the reactions of propene and of H₂ with Ir₄ on γ -Al₂O₃.

Experimental Section

Materials, Sample Preparation, and Handling. The synthesis of Ir_4/γ -Al₂O₃, described elsewhere,⁵ was carried out on a vacuum line or in a drybox (Vacuum Atmospheres HE-63-P) purged with N₂ that was recirculated through O2- and moisture-scavenging traps (supported Cu particles and zeolite 4A, respectively). The drybox was equipped with O₂ and moisture detectors, indicating concentrations <2 ppm. Reagent grade n-pentane solvent (Aldrich) was dried over sodium benzophenone ketyl. He (Matheson, 99.999%) and propene (Matheson, 99.5%) were purified by passage through traps to remove traces of O_2 and moisture. H₂ was supplied by Matheson (99.999%) or generated by electrolysis of water in a Balston generator (99.99%) and purified by traps. [Ir₄(CO)₁₂] (Strem, 98%) was used as received. γ -Al₂O₃ powder (Aluminum Oxide C, Degussa) was made into a paste by adding deionized water, followed by drying overnight at 393 K. It was then ground and stored in a drybox. ¹³C-enriched propene (1,2,3-¹³C₃, 99%) was provided by Cambridge Isotope Laboratories. The standard Ir₄/γ-Al₂O₃ samples contained 1 wt % Ir. A few samples containing 4 wt % Ir were used for spectroscopic measurements when signal-to-noise ratios would otherwise have been low.

X-ray Absorption Spectroscopy. X-ray absorption experiments were performed on beamline X-11A of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory, Upton, NY, and

⁽¹⁾ Cremer, P. S.; Su, X.; Shen, Y. R.; Somorjai, G. A. Catal. Lett. 1996, 40, 143.

⁽²⁾ Cremer, P. S.; Su, X.; Shen, Y. R.; Somorjai, G. A. J. Phys. Chem. 1996, 100, 16302.

⁽³⁾ Cremer, P. S.; Somorjai, G. A. J. Chem. Soc., Faraday Trans. 1995, 91, 3671.

⁽⁴⁾ Cremer, P. S.; Su, X.; Shen, Y. R.; Somorjai, G. A. J. Am. Chem. Soc. 1996, 118, 2942.

⁽⁵⁾ Alexeev, O.; Panjabi, G.; Gates, B. C. J. Catal. 1998, 173, 196.

Table 1. EXAFS Fit Parameters Characterizing $[Ir_4(CO)_{12}]/\gamma$ -Al₂O₃ Treated in Flowing Helium at 588 K and Scanned at a Pressure of $<10^{-5}$ Torr^{*a*}

		temp of scan, K											
			77		298								
backscatterer	N	<i>R</i> [Å]	$\Delta \sigma^2 \cdot 10^3$ [Å ²]	$\Delta E_0 [\mathrm{eV}]$	Ν	<i>R</i> [Å]	$\Delta \sigma^2 \cdot 10^3$ [Å ²]	$\Delta E_0 [\mathrm{eV}]$					
Ir	3.3	2.66	4.8	-4.3	3.4	2.65	6.2	-4.1					
Al	0.3	1.57	5.0	12.8	0.5	1.56	6.3	9.1					
С	0.4	1.91	-3.5	3.6	0.5	1.90	-3.5	-1.1					
0	0.4	2.06	1.3	-4.9	0.7	2.03	5.5	-1.4					
О	1.2	2.56	1.8	-9.2	1.2	2.56	1.8	-9.2					

^a Notation: *N*, coordination number; *R*, absorber–backscatterer distance; $\Delta \sigma^2$, Debye–Waller factor; and ΔE_0 , inner potential correction. The approximate experimental uncertainties are as follows: *N*, coordination number (±10%); interatomic distance, *r* (±0.02 Å); Debye–Waller factor, $\Delta \sigma^2$ (±20%); and inner potential correction, ΔE_0 (±20%).¹⁷

Figure 1. Infrared difference spectra (relative to sample under flow of He) for sequential treatment of Ir_4/γ -Al₂O₃ at 298 K with a, C₃H₆; b, He; c, D₂; and d, He.

on beamline 2-3 of the Stanford Synchrotron Radiation Laboratory (SSRL) at the Stanford Linear Accelerator Center, Stanford, CA. The storage ring electron energy was 2.5 GeV at NSLS and 3 GeV at SSRL; the beam current was 140–240 mA at NSLS and 50–100 mA at SSRL. Samples for transmission EXAFS experiments were prepared in dryboxes at the synchrotrons. To verify the synthesis of Ir₄/ γ -Al₂O₃, the sample was pressed into a self-supporting wafer, loaded, and sealed into an EXAFS cell within the drybox and then scanned under vacuum at approximately liquid nitrogen temperature. A homemade EXAFS cell consisting of a variable-temperature stainless steel body sealed with Mylar windows (Supporting Information, Figure 1) was used for samples in the presence of flowing treatment gases. Higher harmonics in the X-ray beam were minimized by detuning the Si(111) double-crystal monochromator at NSLS or the Si (220) monochromator at SSRL by 20–25% at the Ir L_{III} edge (11 215 eV).

Infrared Spectroscopy. Transmission spectra were recorded with a Bruker IFS-66v spectrometer having a spectral resolution of 4 cm⁻¹. Samples were pressed into self-supporting wafers and loaded into the cell in the drybox. The cell (In-situ Research Institute, Inc., South Bend, IN) used in flow experiments allowed for measurement of transmission spectra while treatment gases flowed over and through the wafer at temperatures ranging from 298 to 573 K. Low-temperature adsorption experiments were carried out with a liquid-nitrogen-cooled cell.⁶ The wafer was cooled to approximately 140 K, treatment gases were dosed into the cell, and the wafer was allowed to warm over a period of several hours as spectra were recorded. Each sample was scanned 128-512 times and the signal averaged. Difference spectra were calculated by subtracting the spectrum of the sample in the presence of an inert gas (typically helium) from that of the sample in the treatment gas. When the absorption by the treatment gas was significant, the spectrum of the treatment gas was subtracted from that of the sample in the treatment gas.

(6) De La Cruz, C.; Sheppard, N. J. Chem. Soc., Faraday Trans. 1997, 93, 3569.

¹³C NMR Spectroscopy. MAS-NMR spectra were recorded using a Chemagnetics CMX-400 spectrometer at a frequency of 100.63 MHz for ¹³C. Samples in the drybox were loaded into 7.5-mm-o.d. ZrO_2 rotors and sealed with double-O-ring-sealed PTFE plugs. Samples were rotated at rates from 3.3 to 4.5 kHz at the magic angle (54.4° relative to the magnetic field). Variation of the rotation rate allowed identification of spinning sidebands.

Kinetics of Adsorption. A RMX-100 multifunctional catalyst-testing and -characterization system (Advanced Scientific Design, Inc., Grosse Pointe Park, MI) with a vacuum capability of 10^{-8} Torr was used for chemisorption experiments. Adsorption kinetics were determined by measuring the volume of treatment gas adsorbed as a function of time on an ~0.25-g sample in a 10-mL glass sample holder. The sample container was evacuated, and then a known volume of gas was dosed into the sample container, which was sealed immediately. The resulting pressure of gas in contact with the sample was monitored as a function of time. Chemisorbed species were distinguished from physisorbed species by the results of two consecutive adsorption experiments with the sample, separated by 30 min of evacuation (10^{-6} to 10^{-7} Torr), the data quantifying both chemisorbed and physisorbed species.

Hydrogen Chemisorption Capacities. Adsorption isotherms were measured at 298 K, as described elsewhere.⁵ Hydrogen chemisorption capacities were measured for Ir_4/γ -Al₂O₃ with and without propene pretreatment. For comparison, hydrogen chemisorption capacities of γ -Al₂O₃ were also measured with and without propene pretreatment.

Data Analysis

X-ray Absorption Spectra. EXAFS data were analyzed using experimentally and theoretically determined reference files, the former obtained from EXAFS data characterizing materials of known structure (Supporting Information, Table 1). Preparation of the EXAFS reference files is described separately,^{7–11} as are the details of the analysis procedures.^{11–13}

Kinetics of Adsorption. Adsorption rate parameters for postulated adsorption models^{14,15} were determined by nonlinear least-squares regression.¹⁶

Results

EXAFS Evidence of Ir₄ Tetrahedra on γ **-Al₂O₃.** EXAFS parameters characterizing the sample formed by adsorption of [Ir₄(CO)₁₂] onto amorphous γ -Al₂O₃ powder (calcined at 673 K), followed by decarbonylation in flowing helium at 573 K

(9) van Zon, F. B. M.; Maloney, S. D.; Gates, B. C.; Koningsberger, D. C. J. Am. Chem. Soc. 1993, 115, 10317.

⁽⁷⁾ Duivenvoorden, F. B. M.; Koningsberger, D. C.; Uh, Y. S.; Gates, B. C. J. Am. Chem. Soc. **1986**, 108, 6254.

⁽⁸⁾ Lu, D.; Rehr, J. J. J. Phys. (Paris) C8 1986, 47, 67.

⁽¹⁰⁾ van Zon, J. B. A. D., Ph.D. Dissertation, Eindhoven University of Technology, The Netherlands, 1988.

⁽¹¹⁾ van Zon, J. B. A. D.; Koningsberger, D. C.; van't Blik, H. F. J.; Sayers, D. E. J. Chem. Phys. **1985**, 82, 5742.

⁽¹²⁾ Vaarkamp, M.; Linders, J. C.; Koningsberger, D. C. Phys. B 1995, 209, 159.

⁽¹³⁾ Kirlin, P. S.; van Zon, F. B. M.; Koningsberger, D. C.; Gates, B. C. J. Phys. Chem. **1990**, *94*, 8439.

Table 2. EXAFS Fit Parameters Characterterizing Ir_4/γ -Al₂O₃ under Flow of Treatment Gas at 298 K and a Pressure of 760 Torr⁴

		treatment gas											
		ł	nelium			р	ropene				H_2		
backscatterer	N	<i>R</i> [Å]	$\Delta \sigma^2 \cdot 10^3$ [Å ²]	ΔE_0 [eV]	N	<i>R</i> [Å]	$\begin{array}{c} \Delta\sigma^2 \cdot 10^3 \\ [\text{\AA}^2] \end{array}$	ΔE_0 [eV]	N	<i>R</i> [Å]	$\Delta \sigma^2 \cdot 10^3$ [Å ²]	ΔE_0 [eV]	
Ir Al	2.8	2.63	4.6	0.0	2.8	2.64	4.7	-3.3	3.3 0.3	2.66 1.65	6.1 7.5	-4.7 -3.2	
Al C	1.6 0.7	3.52 1.80	0.1 0.7	5.4 17.8	1.9 0.5	3.55 1.80	1.7 1.2	3.1 20.0	0.6	3.21	3.3	-4.2	
0 0	0.5 1.5	2.06 2.60	-1.9 7.1	4.2 -8.3	0.6 1.1	2.06 2.69	-0.3 3.8	5.1 -11.1	0.2 1.4	2.15 2.66	-2.7 -1.2	-3.6 -5.6	

^{*a*} Notation as in Table 1.

Table 3. Infrared Assignments for the Sample Formed from Propene Adsorption on Ir_4/γ -Al₂O₃ at 298 K and 760 Torr and the Vibrational Spectra of Propylidyne Ligands on Surfaces and Related Pure Compounds

	assignment, cm ⁻¹										
sample	$v_{as}(CH_3)$	$\nu_{\rm s}({\rm CH_2})$	$\nu_{\rm s}({\rm CH}_3)$	$\delta_{\rm as}({\rm CH}_3)$	$\delta_s(CH_2)$	$\delta_{s}(CH_{3})$	CH_2 wag + $\nu(CC)$	$\rho(CH_{3})$	$\nu(CC)$	CH ₃ rock	ref
$\frac{CH_3CH_2C \text{ on } Ir_4/\gamma - Al_2O_3}{CH_3CH_2C \text{ on } Pt/SiO_2}$	2961 2960	2934 2920	2874 2860	1465 1465 1450	1380 1410	1365 1365 1355	not obsd ^a	1161	not obsd ^a	not obsd ^a	this work 25
CH ₃ CH ₂ C on Pt/SiO ₂ CH ₃ CH ₂ C on Pt(111)	2960 2961	2920 2921	2860 2865	1450 1450	1410 1407	1365	1303		1103 929	1055 1039	24 24
CH ₃ CH ₂ C on Rh(111) Cl ₃ CCH ₂ CH ₃ Co ₃ (CO) ₉ (C ₃ H ₅)				1445 1455 1450	1430 1420	1385 1382 1370	1290 1323	1120 1107 1155	1055 1066 1050	1055	23 80 26

^{*a*} The absorption in this portion of the infrared spectrum is dominated by the alumina support, making the identification of propylidyne modes in this region difficult.

for 2 h, specifically including the Ir–Ir first shell coordination number of about 3 (Table 1), are consistent with the expected⁵ site-isolated tetrahedral Ir₄. EXAFS spectra of Ir₄/ γ -Al₂O₃ in flowing helium, propene, or H₂ at 298 K and 760 Torr (Table 2) show that the tetrahedral metal frame remained unchanged within the experimental uncertainty.^{17,18,22} The EXAFS data also show Ir–Al, Ir–O, and Ir–C contributions. The former two indicate cluster attachment to the γ -Al₂O₃ support.⁵ The Ir–C contribution indicates residual carbon on the clusters from the decomposition of CO during the decarbonylation step or from hydrocarbon species formed from the adsorption of propene onto the clusters.

Infrared Evidence of Ligands Bonded to Ir₄ Supported on γ -Al₂O₃. Contacting of Ir₄/ γ -Al₂O₃ with propene at 298 K and 760 Torr gave a sample with infrared modes at 2961, 2934,

(15) Molecular adsorption kinetics: $r_{ads} = k_{ads} P_{H_2} (n_{tot} - n_{ads})$, where the terminology matches that of footnote (14), with the exception of k_{ads} , the chemisorption rate constant [s⁻¹ Torr⁻¹].

(16) Goodness of fit of the hydrogen chemisorption rate models was determined by the correlation factors for the plot of the predicted chemisorption rate, with regressed rate parameters, against the experimental chemisorption rate.

(17) Vaarkamp, M. Catal. Today 1998, 39, 271.

(18) The importance of anharmonic contributions to the EXAFS spectra of Ir_4/γ -Al₂O₃ during in-situ experiments was investigated qualitatively by scanning a wafer form of the sample at 77 and 298 K under vacuum.^{12,19–21} The results show negligible differences between the fit parameters from the data that were obtained at 77 and 298 K (other than the Debye–Waller factors), which implies that the anharmonic vibrational contributions to the EXAFS spectra recorded at 298 K were negligibly small.

(19) Crozier, E. D.; Seary, A. J. Can. J. Phys. 1980, 58, 1388.

(20) Crozier, E. D. Physica B 1995, 208 & 209, 330.

(21) Stern, E. A.; Līviņš, P.; Zhang, Z. Phys. Rev. B 1991, 43, 8850.

(22) The approximate experimental uncertainties in the EXAFS parameters are the following: *N*, coordination number (±10%); interatomic distance, r (±0.02 Å); Debye–Waller factor, $\Delta\sigma^2$ (±20%); and edge energy shift, E_0 (±20%).¹⁷

Figure 2. Infrared difference spectra (relative to freshly decarbonylated sample) of Ir_4/γ -Al₂O₃ dosed with propene in the following ratios of C_3H_6/Ir_4 : a, 1; b, 2; c, 4; d, 8; e, 20; f, 81; g, 162; and h, 402.

2874, 1635, 1465, 1380, 1365, 1265, 1230, and 1161 cm⁻¹ (Figure 1, spectrum a). To resolve individual surface species, spectra resulting from dosing of different amounts of propene onto Ir₄/ γ -Al₂O₃ at 298 K were recorded (Figure 2). The modes at 2961, 2934, 2874, 1465, 1380, 1365, and 1161 cm⁻¹ are attributed to a single species, because they occurred in constant ratios of intensities and separately from other modes. Comparison of this part of the spectrum to the vibrational spectra of propylidyne on Rh(111),²³ Pt(111),²⁴ and Pt particles dispersed on SiO₂ (Pt/SiO₂)^{24,25} and that of reference metal cluster compounds with propylidyne ligands²⁶ (Table 3) leads to the identification of μ_3 -propylidyne on Ir₄/ γ -Al₂O₃; we thus refer

⁽¹⁴⁾ Dissociative adsorption kinetics: $r_{ads} = k_{ads}P_{H_2}(n_{tot} - n_{ads})^2$, where r_{ads} is the rate of chemisorption [mol g⁻¹ s⁻¹]; k_{ads} , the chemisorption rate constant [g s⁻¹ Torr⁻¹ mol⁻¹]; P_{H_2} , the H₂ pressure [Torr]; n_{tot} , the number H atoms adsorbed at equilibrium [mol g⁻¹]; and n_{ads} , the number of H atoms adsorbed [mol g⁻¹].

⁽²³⁾ Bent, B. E.; Mate, C. M.; Crowell, J. E.; Keol, B. E.; Somorjai, G. A. J. Phys. Chem. **1987**, *91*, 1493.

⁽²⁴⁾ Chesters, M. A.; De La Cruz, C.; Gardner, P.; McCash, E. M.; Pudney, P.; Shahid, G.; Sheppard, N. J. Chem. Soc., Faraday Trans. **1990**, 86, 2757.

⁽²⁵⁾ Shahid, G.; Sheppard, N. Spectrochim. Acta 1990, 46A, 999.

⁽²⁶⁾ Seyferth, D.; Rudie, C. N.; Merola, J. S. J. Organomet. Chem. 1978, 162, 89.

Figure 3. Schematic representation of the formation of propylidyne on Ir_4/γ -Al₂O₃.

Table 4. Infrared Spectra of C_3H_6 in the Gas Phase and Adsorbed on Ir_4/γ -Al₂O₃ at 138 K

						assig	nment, crr	n^{-1}					
sample	$v_{as}(CH_2)$	$\nu(CH)$	$\nu_{\rm s}({\rm CH_2})$	$\nu_{as}(CH_3)$	$\nu_{as}(CH_3)$	$v_{\rm s}({\rm CH_3})$	$\nu(C=C)$	$\delta_{as}(CH_3)$	$\delta(CH_2)$	$\delta(CH_3)$	$\delta(CH)$	ρ(CH ₂)	ρ(CH ₃)
$\overline{C_3H_6 gas^{31}}$	3081	3012	2979	2960	2916	2852	1647	1472 1448	1416	1399	1287	1224 1166	1043 996
$C_{3}H_{6}$ adsorbed on Ir_{4}/γ - $Al_{2}O_{3}^{a}$	3077	3014	2976	2968		2859	1640	1458 1442	1415	1376	1296	1170	1049 1007
$C_{3}H_{6}$ adsorbed on Ir_{4}/γ -Al ₂ O ₃ ^b			2922		2954	2875		1474	1445	1378			
di- σ -bonded propene adsorbed on Pt/SiO ₂ ²⁴			2920		2950	2880		1450	1425	1355			

^a Propene adsorbed at 138 K and scanned at 138 K. ^b Propene adsorbed at 138 K and warmed to 243 K.

to the supported organometallic cluster as $CH_3CH_2CIr_4/\gamma-Al_2O_3$. The stoichiometry of the propylidyne formation is inferred to be as follows

$$C_{3}H_{6} + Ir_{4}/\gamma - Al_{2}O_{3} \rightarrow CH_{3}CH_{2}CIr_{4}/\gamma - Al_{2}O_{3} + H \quad (1)$$

(the hydrogen that is produced reacts, at least in part, with the γ -Al₂O₃ support; see below). This reaction is represented schematically in Figure 3A.

A second organometallic cluster species is associated with the modes at 1265 and 1230 cm⁻¹, which were observed at low intensity for low propene exposures (<4.0 C₃H₆/Ir₄), when propylidyne formation did not occur (Figure 2, spectra a–c). These modes were absent for propene exposures in the range of 8.0 < C₃H₆/Ir₄ < 81 (Figure 2, spectra d–f)—when propylidyne was formed predominantly—and they were observed along with the propylidyne modes at high propene exposures (C₃H₆/Ir₄ > 162) (Figure 2, spectra g–h). The identities of the species associated with these modes are addressed below.

The remaining mode, at 1635 cm⁻¹, is identified as the O–H bending frequency of water on the γ -Al₂O₃ support, because it was observed when water was adsorbed onto γ -Al₂O₃²⁷ or Ir₄/ γ -Al₂O₃ (Supporting Information, Figure 2). This mode occurred simultaneously with the formation of either propylidyne or, at greater intensity, the second organometallic cluster species mentioned in the preceding paragraph. These results indicate that at least part of the hydrogen formed in the dissociation of propene on Ir₄ was spilled over²⁸ onto the support, where it reacted to form surface OH groups and water, as represented schematically in Figures 3A and B.

The second supported organometallic cluster species referred to above (associated with the modes at 1230 and/or 1265 cm⁻¹) occurred in association with large increases in the amount of water on the support; thus, the hydrocarbon ligands are inferred to be highly dehydrogenated species that are formed from propene. These frequencies nearly match the C–C stretching frequency observed²⁹ for a species approximated as C₂H on a metal single crystal, Ir(111) (1260 cm⁻¹); thus, we refer to the dehydrogenated species as approximately C_xH_y (e.g., C₃H₂³⁰ or C₂H^{23,29}). The stoichiometry of the formation of C_xH_y (for example, x = 3) is inferred to be as follows:

$$C_{3}H_{6} + Ir_{4}/\gamma - Al_{2}O_{3} \rightarrow C_{3}H_{y}Ir_{4}/\gamma - Al_{2}O_{3} + (6 - y)H \quad (2)$$

(where, again, the hydrogen is spilled over, at least in part, onto the support).

When propene was brought in contact with Ir_4/γ -Al₂O₃ at a low temperature (138 K) and the sample warmed slowly, the propene initially adsorbed molecularly, as shown by the similarity of the infrared spectrum (Figure 4) to that of gaseous propene³¹ (Table 4). As the sample warmed, adsorbed propene modes began decreasing in intensity at 198 K and were completely removed at approximately 218 K. As propene was converted and these modes disappeared, a very strong support surface water peak arose at 1635 cm⁻¹, along with a less intense peak for C_xH_y at 1266 cm⁻¹. The results indicate that at temperatures above 219 K, adsorbed propene was converted to C_xH_y, as shown schematically in Figure 3B. Neither continued

⁽²⁷⁾ Peri, J. B.; Hannan, R. B. J. Phys. Chem. 1960, 64, 1526.
(28) Conner, W. C., Jr.; Falconer, J. L. Chem. Rev. 1995, 95, 759.

⁽²⁹⁾ Marinova, T. S.; Kostov, K. L. Surf. Sci. 1987, 181, 573.

⁽³⁰⁾ Avery, N. R.; Sheppard, N. *Proc. R. Soc. London A* **1986**, *405*, 1. (31) Shimanouchi, T. Tables of Molecular Vibrational Frequencies,

Vol. I NSRDS-NSB 39, Vol. II J. Chem. Ref. Data 1977, 6, 993.

Figure 4. Infrared difference spectra (relative to sample under vacuum) of low-temperature C_3H_6 adsorption on Ir_4/γ -Al₂O₃ and the resulting spectra as the sample was warmed to room temperature.

Figure 5. Infrared difference spectra (relative to sample under flow of He) for sequential treatment of Ir_4/γ -Al₂O₃ at 298 K with a, D₂; b, He; c, C₃H₆; and d, He.

warming of the sample to 298 K nor additional exposure of the warmed sample to propene at 298 K and 760 Torr resulted in the formation of additional modes. This last observation indicates that $C_x H_y$ remained on the clusters.

When propene was allowed to react at 298 K and 760 Torr with Ir_4/γ -Al₂O₃ that had been pretreated with H₂ or D₂ (at 298 K and 760 Torr), infrared modes corresponding to propylidyne were observed, but with much lower intensities (Figure 5, spectrum d) than when freshly decarbonylated Ir_4/γ -Al₂O₃ was used (Figure 1, spectrum a). These results indicate that H₂ or D₂ formed species that hindered formation of propylidyne from propene on Ir₄. Instead, propene was mainly converted into C_xH_y, as indicated by the infrared mode at 1265 cm⁻¹ (Figure 5, spectrum d).

¹³C NMR Evidence of Propylidyne on Ir₄/ γ -Al₂O₃. The single-pulse ¹³C MAS-NMR spectrum of the sample that was formed by contacting isotopically enriched propene (1,2,3-¹³C₃, 99%) with Ir₄/ γ -Al₂O₃ at 298 K and 50 Torr includes resonances³² at 7.7, 11.7, 13.8, 17.5, 19.4, 22.0, 27.0, 28.7, 112 (rotor), 134, and 165 ppm (Figure 6). The cross-polarization (CP) ¹³C MAS-NMR spectrum of this sample includes resonances at 7.4, 12.8, 18.1, 27.0, 134, and 186 ppm (Figure 6). The resonances at 22–27 ppm are associated with species formed by adsorption of propene onto the γ -Al₂O₃ support.^{33,34}

(33) The ¹³C MAS-NMR spectra of the species formed by adsorption of propene onto γ -Al₂O₃ at 298 K and 50 Torr resulted in peaks at 21.7 and 25.8 ppm (Supporting Information, Figure 5).

Figure 6. ¹³C NMR spectra of ¹³C₃H₆ adsorbed onto Ir₄/ γ -Al₂O₃ at 298 K and 100 Torr (forming propylidyne). MAS data were obtained at 100.6 MHz with a 4.4 kHz spinning rate, 6- μ s pulse width, and 15-s relaxation time. CP-MAS data were obtained at 100.6 MHz with a 4.0 kHz spinning rate and 5-ms contact time.

Table 5. ^{13}C NMR Assignments of Propylidyne and C_xH_y on $Ir_4/\gamma\text{-}Al_2O_3$

	chemical shift, ppm						
assignment	$\overline{C_x H_y}$ on Ir_4/γ -Al ₂ O ₃	ref material35					
-CH2-	7.4, 12.8	-5 to 15^{a}					
$-CH_3$	18.1	$13 - 26^{a}$					
-C≡	186.0	219.3, ^b 154.7 ^c					
$C_x H_y$	132	134.4^{d}					

^{*a*} Ethyl ligands of transition metal complexes. ^{*b*} [Ru₃(CO)₉(μ -H)₃(μ ₃-CCH₃)]. ^{*c*} [Os₃(CO)₉(μ -H)₃(μ ₃-CCH₃)]. ^{*d*} [Os₃(CO)₉(μ -H)(μ ₃- η ²-CCH)].

The other resonances are attributed to the species that were formed from propene and bonded to Ir_4 . These agree well with the resonances in the ¹³C NMR spectra of osmium clusters and ruthenium clusters incorporating ethylidyne ligands and osmium clusters incorporating C–CH ligands (Table 5). The identities of both alkylidyne ligands and C_xH_y ligands in the NMR sample are confirmed by the infrared spectrum (Supporting Information, Figure 3).

Infrared Evidence of the Stability of Ligands Bonded to Ir₄ on γ -Al₂O₃. Propylidyne and C_xH_y, produced together on Ir₄/ γ -Al₂O₃ by adsorption of propene at 298 K and 760 Torr, were stable in flowing helium at 298 K and 760 Torr, as shown by the infrared spectra (Figure 1, spectrum b). These species did not undergo exchange with C₃D₆ gas at 298 K and 50 Torr (Supporting Information, Figure 4). Propylidyne and C_xH_y species were unmodified in 100 Torr of D₂ at 298 K (Figure 1, spectrum c), although hydrogen in O–H groups of the support and support water readily underwent isotopic exchange,³⁶ as expected.³⁷

CH₃CH₂CIr₄/ γ -Al₂O₃ was stable during heating in flowing helium (Figure 7A) or H₂ (Figure 7B) at temperatures up to 523 K, and it was still present at 573 K. At temperatures between 523 and 573 K, infrared modes indicating CH₃CH₂C were replaced by very broad modes in the range of 1800 and 2200

⁽³²⁾ The listed resonances do not include spinning sidebands.

⁽³⁴⁾ Samples incorporating Ir_4 took up 2 orders of magnitude more propene than the support alone (Supporting Information, Figure 7).

⁽³⁵⁾ Evans, J.; McNulty, G. S. J. Chem. Soc., Dalton Trans. **1984**, 79. (36) Hydrogen in water on the surface of γ -Al₂O₃ was exchanged with deuterium, as shown by the replacement of δ_{OH} at 1635 cm⁻¹ with δ_{OD} at 1204 cm⁻¹ and the replacement of ν_{OH} at \sim 3300 cm⁻¹ with ν_{OD} at \sim 2400 cm⁻¹. Surface hydroxyl groups of γ -Al₂O₃ were converted to deuterioxyl groups of γ -Al₂O₃, as shown by the replacement of ν_{OH} at 3600–3800 cm⁻¹ with ν_{OD} at 2600–2800 cm⁻¹.

⁽³⁷⁾ Carter, J. L.; Lucchesi, P. J.; Corneil, P.; Yates, D. J. C.; Sinfelt, J. H. J. Phys. Chem. **1965**, 69, 3070.

Figure 7. Infrared absorption spectra, recorded during thermal treatment of the sample, formed by adsorption of C_3H_6 onto Ir_4/γ -Al₂O₃ at 298 K and 275 Torr in flowing He (A) or H₂ (B).

Table 6. H/Ir Ratios for Adsorption of Hydrogen onto Ir_4/γ -Al₂O₃ at 298 K and 104 Torr

sample	pretreatment	amt chemisorbed $[mol (g sample)^{-1}]$	H/Ir [mol/mol]
$ \begin{array}{l} \mathrm{Ir}_4/\gamma - \mathrm{Al}_2 \mathrm{O}_3{}^a \\ \mathrm{Ir}_4/\gamma - \mathrm{Al}_2 \mathrm{O}_3{}^a \\ \gamma - \mathrm{Al}_2 \mathrm{O}_3 \text{ (calcined at 673 K)} \\ \gamma - \mathrm{Al}_2 \mathrm{O}_3 \text{ (calcined at 673 K)} \end{array} $	none C_3H_6 at 298 K and 104 Torr for 0.5 h none C_3H_6 at 298 K and 104 Torr for 0.5 h	7.6 1.0 0.3 0.5	1.5 2.0

^a 1 wt % Ir.

Table 7. Specific Adsorption Rate Parameters for Hydrogen Chemisorption on Freshly Decarbonylated and Propene-Treated^{*a*} Ir_4/γ -Al₂O₃ at 298 K and 104 Torr^{14,15}

sample pretreatment	adsorption model	total adsorption sites n_{tot} [mol g ⁻¹]	adsorption rate constant k_{ads}	R^2 of fit
none propene ^a none propene ^a	molecular molecular dissociative dissociative	$\begin{array}{c} 3.67 \times 10^{-5} \\ 1.34 \times 10^{-4} \\ 7.34 \times 10^{-5} \\ 3.07 \times 10^{-4} \end{array}$	$\begin{array}{c} 1.29 \times 10^{-4 \ b} \\ 5.26 \times 10^{-5 \ b} \\ 10^c \\ 0.18^c \end{array}$	0.72 0.92 0.99 0.99

^a Treatment at 298 K and 104 Torr for 0.5 h. ^b Units of s⁻¹ Torr⁻¹. ^c Units of g mol⁻¹ s⁻¹ Torr⁻¹.

cm⁻¹, indicative of cluster-bound CO, which we infer was formed by the reaction of propylidyne with support oxygen.³⁸ The lack of formation of new infrared modes in the C–H stretching and bending frequency range as propylidyne decomposed indicates that propylidyne did not react to give dehydrogenated or polymerized species. The C_xH_y mode (1265 cm⁻¹) was unchanged when the sample was heated in flowing helium or H₂ at temperatures up to 523 K (Figures 7A,B).

Hydrogen Chemisorption Capacities of γ -Al₂O₃ and Ir₄/ γ -Al₂O₃. Hydrogen chemisorption capacities³⁹ of γ -Al₂O₃ that had been calcined at 673 K and of Ir₄/ γ -Al₂O₃ (with and without propene pretreatment) are summarized in Table 6. H₂ reacted with each sample, and samples incorporating Ir₄ took up an order of magnitude more H₂ than the support alone. The results do not distinguish between hydrogen remaining on the clusters and that which was spilled over onto the support²⁸ (facilitated by the Ir₄). The results indicate that propylidyne formation did not hinder the clusters' capacity to chemisorb hydrogen (the presence of propylidyne slightly increased the total amount of hydrogen chemisorbed by the sample).

Kinetics of Hydrogen Chemisorption onto Ir₄/ γ -Al₂O₃. H₂ might be expected to adsorb onto Ir₄ dissociatively (as is typical for metal surfaces)⁴⁰ or molecularly.⁴¹ These possibilities can be distinguished by the kinetics of adsorption.^{14,15} The rate parameters found from the data characterizing hydrogen chemisorption onto Ir₄/ γ -Al₂O₃ and onto CH₃CH₂CIr₄/ γ -Al₂O₃ at 298 K and an initial H₂ pressure of 104 Torr are shown in Table 7. Parameters were determined by fitting the data to forms of the equation that correspond to each of the two modes of adsorption. The dissociative chemisorption model represents the rate data satisfactorily, whereas the molecular adsorption model does not (Table 7).¹⁶ Dissociative adsorption kinetics are consistent with the formation of iridium hydride (Ir–H);⁴² however, again we

⁽³⁸⁾ Dufour, P.; Houtman, C.; Santini, C. C.; Nédez, C.; Basset, J.-M.; Hsu, L. Y.; Shore, S. G. J. Am. Chem. Soc. **1992**, 114, 4248.

⁽³⁹⁾ Hydrogen chemisorption capacities were calculated for adsorption starting at 104 Torr of H_2 . H:Ir atomic ratios were calculated on the basis of the total amount of Ir.

⁽⁴⁰⁾ Ertl, G. Z. Phys. Chem. N. F. 1989, 164, 1115.

⁽⁴¹⁾ Crabtree, R. H. *The Organometallic Chemistry of the Transition Metals*, 2nd ed.; Wiley: New York, 1994; p 64.

cannot separate hydrogen that remained on the clusters from that which spilled over onto the support.

Discussion

The data provide the first evidence of structurally well-defined supported metal clusters with hydrocarbon ligands and, thus, the opportunity to compare the formation and reactivities of these ligands on supported clusters, supported particles, and single crystals of metal. We expect the reactivity of propylidyne on Ir₄ to differ from that on extended metal surfaces, because research with gas-phase clusters^{48–51} has shown that the reactivity of hydrocarbons with clusters depends sharply on the cluster size and ligand environment,⁵² and because research with supported clusters has shown that the catalytic activity for arene hydrogenation depends on cluster size.⁵³

Theoretical modeling of alkenes on metal surfaces^{54–56} and the literature of hydrocarbon adsorbates on metal single crystals⁵⁷ show that the formation, stability, and reactivity of adsorbates on metals are sensitive to the structure and electronic properties of the metal and influenced by reaction conditions and the presence of adsorbates. We infer that, besides electronic (ligand) effects caused by the interaction of the support with the clusters, the smallness of isolated Ir₄ clusters limits what can be bonded to them, thereby restricting the reactions that can proceed on them.

In the following paragraphs, we contrast the reactivity of propene with supported Ir_4 , on the one hand, and metal surfaces, on the other. We also contrast the reactivity of propylidyne formed from propene on Ir_4 with that of propylidyne on metal surfaces.

Formation of Alkylidynes on Metal Clusters and Metal Surfaces. Ethylidyne forms readily from ethene on the (111)

(43) Richter, L. J.; Germer, T. A.; Ho, W. Surf. Sci. 1988, 195, L182.

(44) Candy, J. P.; Fouilloux, P.; Primet, M. Surf. Sci. 1978, 72, 167.

(45) Primet, M.; Basset, J.-M.; Mathieu, M. V. J. Chem. Soc., Faraday Trans. 1 1974, 70, 293.

(46) Baró, A. M.; Ibach, H.; Bruchmann, H. D. *Surf. Sci.* **1979**, 88, 384. (47) The ¹H NMR spectrum of the sample formed by reaction of H₂ with Ir_4/γ -Al₂O₃ at 760 Torr and 298 K showed conclusive resonances only for the γ -Al₂O₃ support and the rotor (Supporting Information, Figure 6). If hydride had been present, its spectrum could have been superimposed with that of either the γ -Al₂O₃ or the rotor; alternatively, the hydride resonance could have been too broad to be distinguished from the baseline.

(48) Schnabel, P.; Irion, M. F. Ber. Bunsen-Ges. Phys. Chem. 1992, 96, 1101.

(49) Kaldor, A.; Cox, D. M. J. Chem. Soc., Faraday Trans. 1990, 86, 2459.

(50) Seivers, M. R.; Jarvis, L. M.; Armentrout, P. B. J. Am. Chem. Soc. 1998, 120, 1891.

(51) Bowers, M. T.; Kemper, P. S.; von Helden, G.; Hsu, M.-T. In *Fundamentals of Gas-Phase Ion Chemistry*; Jennings, K. R., Ed.; Kluwer: Dordrecht, The Netherlands, 1991; pp 55–85.

(52) Schnabel and Irion⁴⁸ observed that Fe_n^+ clusters ($4 \le n \le 13$) are unreactive for bonding and dehydrogenation of ethane, except for n = 4 or 5. Formation of Fe₄H⁺ rendered the cluster unreactive for bonding and dehydrogenation of ethane, but the addition of H to Fe₃⁺ (forming Fe₃H⁺) rendered it reactive for bonding and dehydrogenation of ethyne, although Fe₃⁺ did not bind or dehydrogenate ethyne.⁴⁸

(53) Xu, Z.; Xiao, F.-S.; Purnell, S. K.; Alexeev, O.; Kawi, S.; Deutsch, S. E.; Gates, B. C. *Nature* **1994**, *372*, 346.

(54) Neurock, M.; Pallassana, V.; van Santen, R. A. J. Am. Chem. Soc. 2000, 122, 1150.

(55) Pallassana, V.; Neurock, M. J. Catal. 2000, 191, 301.

(56) Silvestre, J.; Hoffmann, R. Langmuir 1985, 1, 621.

(57) Yagasaki, E.; Masel, R. I. Variation in the Mechanism of Catalytic Reactions with Crystal Face. In Catalysis; Spivey, J. L., Ed.; Royal Society of Chemistry: Cambridge, 1994; Vol. 11, p 163.

faces of Pt^{58,59} (at 255–280 K), Ir²⁹ (at 180 K), Pd⁶⁰ (at 300 K), and Rh⁶¹ (at 310 K). Low-temperature (92–240 K) adsorption of ethene onto Pt(111) gives di- σ -bonded ethene, followed by conversion to ethylidyne as the temperature is increased to 280–310 K.^{58,59,62} The formation of propylidyne from propene on Pt(111),^{2,24,30,63} Rh(111),²³ and Pt/SiO₂^{24,25} closely parallels the formation of ethylidyne from ethene on these metals.⁶⁴

In contrast, the data presented here demonstrate that lowtemperature (138 K) adsorption of propene onto Ir_4/γ -Al₂O₃ does not lead to the formation of di- σ -bonded propene⁶⁵ and then to propylidyne, but rather to the formation of C_xH_y , whereas propene adsorption at higher temperatures, 298 K, does result in the formation of propylidyne. Using density functional theory, Watson et al.⁶⁷ showed that there is a significant activation barrier (12 kJ mol⁻¹) for the transformation of π -bonded (molecularly adsorbed) ethene into di- σ -bonded ethene on the (111) face of Pt; ethene adsorbs in a π -bonded form at temperatures <50 K and transforms into di- σ -bonded ethene at higher temperatures and into ethylidyne at still higher temperatures. We suggest that the transformations of species derived from propene on Ir_4/γ -Al₂O₃ are also activated. The data show that propene remains molecularly adsorbed on Ir_4/γ -Al₂O₃ as the sample is warmed from 138 to 219 K, at which temperature it is not transformed at a significant rate into di- σ -bonded propene (and then into propylidyne) because, we suggest, the barrier for conversion of π -bonded to di- σ -bonded propene is too high.68 However, in contrast to the reactivity of propene on Pt(111), propene molecularly adsorbed on Ir_4/γ -Al₂O₃ decomposes (to give $C_x H_y$) at temperatures lower than that inferred to be necessary for conversion into the di- σ -bonded species. Thus, we postulate that the reason low-temperature adsorption of propene onto $Ir_4/\gamma - Al_2O_3$ does not lead to the formation of propylidyne is that the precursor di- σ -bonded propene does not form.⁷⁰ At room temperature, propene adsorption immediately results in the formation of propylidyne; we infer that the intermediate (presumably di- σ -bonded propene) was so shortlived that we could not observe it spectroscopically.

(58) Cregithon, J. R.; White, J. M. Surf. Sci. 1983, 327.

(59) Cremer, P.; Stanners, C.; Niemantsverdriet, J. W.; Shen, Y. R.; Somorjai, G. A. Surf. Sci. **1995**, 328, 111.

(60) Gates, J. A.; Kesmodel, L. L. Surf. Sci. 1983, 124, 68.

(61) Keol, B. E.; Bent, B. E.; Somorjai, G. A. J. Chem. Phys. 1984, 146, 211.

(62) Steininger, H.; Ibach, H.; Lehwald, S. Surf. Sci. 1982, 117, 685.

(63) Koestner, R. J.; Frost, J. C.; Stair, P. C.; Van Hove, M. A.; Somorjai,
 G. A. Surf. Sci. 1982, 116, 85.

(64) Vibrational spectra show that propene adsorption on Pt(111) proceeds at low temperature (187 K) through a di- σ -bonded species (with the C=C bond parallel to the surface), followed at higher temperatures (231–310 K) by formation of propylidyne (with the bond between the carbyne carbon and the methylene carbon oriented perpendicular to the surface).^{2,30}

(65) Low-temperature (<80 K) adsorption of propene on Ir(111) leads to the formation of di- $\sigma\text{-bonded}$ propene.^66

(66) Karseboom, S. G.; Davis, J. E.; Mullins, C. B. Surf. Sci. 1998, 398, 11.

(67) Watson, G. W.; Wells, R. P. K.; Willock, D. J.; Hutchings, G. J. J. Phys. Chem. B 2000, 104, 6439.

(68) π -Bonded propene presumably transforms into di- σ -bonded propene at a higher temperature on Ir₄/ γ -Al₂O₃ than that on Ir(111),⁶⁶ because the γ -Al₂O₃ support affects the clusters as a ligand in roughly the way that potassium adsorbates increase the charge density on the Pt atoms of Pt(111), thus hindering the strong σ -donation of adsorbed ethene to platinum and reducing the chemisorption bond strength.⁶⁹ Evidence of this interaction of the support with the clusters is shown by the iridium—oxygen contributions in the EXAFS data (see Tables 1 and 2).

(69) Windham, R. G.; Bartram, M. E.; Keol, B. E. J. Phys. Chem. 1988, 92, 2862.

(70) We infer that the interaction of γ -Al₂O₃ support with Ir₄ (and potentially the limited size of the Ir₄ clusters) increases the barrier for the conversion of π -bonded to di- σ -bonded propene on Ir₄/ γ -Al₂O₃.

⁽⁴²⁾ Metal hydrides have been observed on single crystals and supported particles of metal by vibrational spectroscopy.^{25,43–46} Such observations are usually difficult because the peaks are often broad and weak, and we were unable to observe iridium hydrides either by infrared or NMR⁴⁷ spectroscopy.

Figure 8. Schematic representation of the stability and reactivity of propylidyne on Ir_4/γ -Al₂O₃ and on extended surfaces of metal (demonstrated by particles of platinum supported on SiO₂²⁵).

Not only does the temperature of adsorption affect the formation of alkylidynes from alkenes, but so does the presence of coadsorbates on the metal surface or, in our case, Ir_4 on γ -Al₂O₃. Using potassium, oxygen, bismuth, or other adsorbates, researchers⁷¹ have demonstrated that the electronic structure and/ or geometry of Pt(111) could be modified sufficiently to give a variety of surface species other than ethylidyne from the adsorption of ethene. Similarly, it has been shown⁷⁴ that preadsorption of hydrogen onto Fe(100) (forming H–Fe(100)) limits the extent of electron back-donation to coadsorbed ethene, which results in the formation of ethyl species instead of the ethynyl and methylidyne species that form on clean Fe(100).

In qualitative agreement with those results, we have found that H₂ pretreatment of Ir₄/ γ -Al₂O₃ largely inhibits the formation of propylidyne from propene at 298 K, giving, instead, dehydrogenated propene. The difference in products formed from the adsorption of propene on Ir₄/ γ -Al₂O₃ and H₂-pretreated Ir₄/ γ -Al₂O₃ demonstrates that at least some of the adsorbed hydrogen (inferred to be hydride on the basis of the chemisorption kinetics) remained on the clusters and affected their reactivity, largely preventing the formation of propylidyne.

Thermal Decomposition of Propylidyne on Metal Clusters and Metal Surfaces. Ethylidyne on the (111) faces of Ir,²⁹ Rh,⁷⁵ Pt,⁷⁶ and other metals decomposes thermally to give carbonaceous products. Similarly, propylidyne decomposes thermally on Rh(111) at 270–310 K,²³ on Pt(111) at 390 K,² and on Pt/ SiO₂ at 403–433 K.²⁵ At these temperatures, propylidyne gives ethylidyne on Rh(111)²³ and on Pt/SiO₂,²⁵ whereas it gives an unsaturated species (likely vinyl methylidyne, M=CCHCH₂) on Pt(111).² Upon further heating, carbonaceous species similar to those formed from ethylidyne thermal decomposition are observed.

The decomposition of propylidyne on Ir_4/γ -Al₂O₃ is much different from that on extended metal surfaces. Propylidyne on Ir_4 on γ -Al₂O₃ was found to be stable in helium at temperatures as high as 523 K; at higher temperatures it reacted with the support to give CO rather than decomposing to give ethylidyne or other hydrocarbon fragments.

This sharp distinction between the reactivities of the clusters and extended metal surfaces is attributed, at least in part, to the limited size of the clusters (demonstrated by their first-shell Ir-Ir coordination number of 3) and their site-isolation (demonstrated by the lack of higher-shell Ir-Ir contributions in the EXAFS). We infer that an ensemble of metal atoms incorporating more than just the three metal atoms to which propylidyne is bonded is required for the thermal decomposition of propylidyne, as shown schematically in Figure 8A. This inference is bolstered by the work of Chakarov and Marinova,77 who showed that as a result of preadsorption of CO onto Ir(110), ethylidyne became thermally stable at higher temperatures (\sim 50 °C) than when CO was absent. The authors concluded that the adsorbed CO broke up the periodic array of the surface and blocked the formation of the decomposition products, thereby increasing ethylidyne's thermal stability.77

By analogy, we infer that the limited size of the site-isolated Ir_4 clusters is not sufficient to allow the formation of propylidyne decomposition products; instead, at higher temperatures, the

⁽⁷¹⁾ By adsorbing potassium^{69,72} (or oxygen⁶²) on Pt(111), Zhou et al.⁷² and Windham et al.⁶⁹ (or Steininger et al.⁶²) demonstrated that the reaction of ethene could be directed from that giving ethylidyne to that giving π -bonded ethene and/or di- σ -bonded ethene. Windham et al.⁷³ used adsorbed Bi atoms as site-blocking agents to limit the amount of di- σ -bonded ethene formed from ethene gas on Pt(111).

⁽⁷²⁾ Zhou, X.-L.; Zhu, X.-Y.; White, J. M. Surf. Sci. 1988, 193, 387.
(73) Windham, R. G.; Koel, B. E.; Paffet, M. T. Langmuir 1988, 4, 1113.
(74) Merrill, P. B.; Madix, R. J. J. Am. Chem. Soc. 1996, 118, 5062.

⁽⁷⁵⁾ Dubois, L. H.; Castner, D. G.; Somorjai, G. A. J. Chem. Phys. 1980, 72, 5234.

⁽⁷⁶⁾ Baró, A. M.; Ibach, H. J. Chem. Phys. 1981, 74, 4194.

Propylidyne on γ -Al₂O₃-Supported Ir₄

propylidyne on the clusters reacts with the neighboring oxygen atoms of the support to give CO (Figure 8B).

Reactivity of H₂ with Propylidyne on Metal Clusters and Metal Surfaces. Shahid and Sheppard²⁵ found that a large fraction of the propylidyne and di- σ -bonded propene on Pt particles in Pt/SiO₂ was hydrogenated when the sample was exposed to H₂ at room temperature. Ogle and White⁷⁸ reported that both ethylidyne and propylidyne on Pt(111) readily exchange hydrogen with gaseous D₂ at 330 K.

In contrast, we observed that propylidyne on Ir_4/γ -Al₂O₃ does not react with H₂ at temperatures up to 523 K or undergo isotopic exchange with gaseous D₂ at 298 K. Again, we infer that the difference in reactivities between propylidyne on Ir_4/γ -Al₂O₃ and propylidyne on extended metal surfaces is related to the smallness and site-isolation of the clusters. This inference is bolstered by the results of Keol et al.,⁶¹ who observed that the rate of H/D exchange in ethylidyne ligands on Rh(111) at 310 K depends strongly on the fraction of the metal surface that is bare. They postulated a reaction proceeding through an ethylidene intermediate (μ_2 -CDCH₃), presumably requiring metal bonding sites neighboring those to which ethylidyne is bonded.⁷⁹ Such a process is blocked on Ir_4/γ -Al₂O₃, because there are no metal bonding sites neighboring those to which the alkylidyne is bonded.

Furthermore, because the presence of propylidyne on Ir_4/γ - Al_2O_3 did not hinder the chemisorption of hydrogen by the clusters, the lack of reactivity of propylidyne on Ir_4/γ - Al_2O_3 with H_2 or D_2 (for isotopic exchange or hydrogenation) is not caused by the lack of available hydrogen. We infer that the lack of adjacent metal sites prevents the reaction of hydrogen with propylidyne because the intermediates cannot form (Figure 8).

Conclusions

Infrared and ¹³C NMR spectroscopy were used to characterize the formation and reactions of propylidyne on site-isolated Ir₄ clusters supported on γ -Al₂O₃. EXAFS spectra show that the Ir₄ tetrahedra remained essentially unchanged during the reactions at 298 K. H₂ chemisorption measurements provide evidence for the formation of hydride ligands on the supported clusters. Propylidyne on Ir₄/ γ -Al₂O₃ is more stable and less reactive with H₂ than propylidyne on extended metal surfaces. The difference indicates the need for an ensemble of metal atoms (in addition to the three to which propylidyne is bonded) for the reaction of propylidyne. Thus, the data highlight the unique reactivity of supported (site-isolated) metal clusters, specifically demonstrating their ability to shut off reactions that occur on extended metal surfaces.

Acknowledgment. This research was supported by the National Science Foundation (Grant CTS-9617257). We thank the W. M. Keck Foundation for funds to purchase the NMR spectrometer. We acknowledge beam time and the support of the U.S. Department of Energy, Division of Materials Sciences, under Contract No. DE-FG05-89ER45384 for its role in the operation and development of beamline X-11A at the National Synchrotron Light Source. The NSLS is supported by the Department of Energy, Division of Materials Sciences and Division of Chemical Sciences, under Contract No. DE-AC02-76CH00016. We are grateful to the staff of beam line X-11A for their assistance. We acknowledge the Stanford Synchrotron Radiation Laboratory, which is operated by Stanford University for the Department of Energy, Office of Basic Energy Sciences, for access to beam time on beam line 2-3. The EXAFS data were analyzed with the XDAP software.¹²

Supporting Information Available: Table of crystallographic data. Seven figures, including infrared spectra, ¹³C NMR and ¹H NMR spectra, and propene chemisorption as a function of time. This material is available free of charge via the Internet at http://pubs.acs.org.

JA002818Q

⁽⁷⁸⁾ Ogle, K. M.; White, J. M. Surf. Sci. 1986, 165, 234.

⁽⁷⁹⁾ The methyl H extraction/D transfer from carbon carbon to methyl carbon (resulting in the formation of μ_3 -CCDH₂ from μ_2 -CDCH₃) was determined to be the rate-limiting step.⁶¹

⁽⁸⁰⁾ Goursot-Leray, A.; Carles-Lorjou, M.; Pouzard, G.; Bodot, H. Spectrochim. Acta, Part A 1973, 29A, 1497.

⁽⁸¹⁾ Wyckoff, R. W. G. Crystal Structures, 2nd ed.; Wiley: New York, 1963; Vol. 1, p 10.

 ⁽⁸²⁾ Trömel, M.; Lupprich, E. Z. Anorg. Allg. Chem. 1975, 414, 160.
 (83) Churchill, M. R.; Hutchinson, J. P. Inorg. Chem. 1978, 17, 3528.